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Abstract. In perturbation calculations using basis states defined in terms of spherically 
symmetric potentials it is often necessary to simplify complicated expressions involving n - j  
symbols. A well known graphical technique can be used to aid in this process. We represent 
the graphs by their incidence matrices, so that the algebraic manipulations can be carried out 
by matrix arithmetic. It is shown that the sequence of operations required to simplify a given 
graph can be determined from structural considerations based on the properties of certain 
polynomials in the adjacency matrix. This provides a method of performing complete 
perturbation calculations of this type on a computer. 

1. Introduction 

The work of YutsisQ et a1 (1962) put graphical methods for carrying out angular 
momentum calculations on a rigorous basis. Their techniques have an advantage over 
the algebraic manipulations they represent in that they give a visual impression of the 
moves necessary to simplify a complicated expression. There is also a simple expression 
of the relationship between angular momentum expressions and the corresponding 
Feynman diagram forms of terms in the perturbation series (Judd 1967). 

Recent expositions of this theory (notably those of Brink and Satchler 1968, and 
Sandars 1969) have established some generalizations as well as defining a fairly 
standard notation for angular momentum diagrams and making the theory more easily 
understood. We shall assume the reader to be familiar with this work. 

One disadvantage of graphical manipulations is that they can become confusing in 
cases when the graphs are large, as in the case of higher order perturbation contribu- 
tions. The purpose of this article is to show that in situations of this kind some standard 
techniques of mathematical graph theory can be used to reduce graphical manipulations 
to arithmetical manipulations of matrices. 

In 0 1 we describe the representation of angular momentum graphs by their 
incidence matrices. The rules for manipulating incidence matrices are given in Q 2 and 
0 3. We then present in Is 4 an algorithm for computer control of the process of reducing 
a complicated angular momentum expression to a sum of products of 6-j symbols. An 
example is given in Q 5 .  

§ Although this name is more properly spelt ‘Jucys’, we shall adhere to the spelling used in our reference. 
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2. Representation of angular momentum graphs by incidence matrices 

The main difference between angular momentum graphs and the graphs studied by 
mathematicians is that the latter are always closed, in the sense that every edge joins two 
vertices, while the former may be open, so that the ends of some edges do not end at 
vertices. Nevertheless, the incidence matrix, which merely tabulates the edges incident 
at each vertex, allows us to represent edges which are incident at a single vertex. For 
example, figure l(a) is represented by the incidence matrix: 

a b c d e f  

1 . . 1 1 .  

. . 1 . 1 1  

. 1 . 1 . 1  

We have not labelled the vertices (corresponding to the rows of the matrix) because they 
are not distinguished in angular momentum diagrams, although the edges correspond to 
specific angular momentum values. 

l a  

(a)  

Figure 1. 

One consequence of representing open edges in incidence matrices is that directed 
edges (arcs) can no longer be indicated in the usual way by writing -1 for one end and 1 
for the other. Figure l(b), containing some directed edges, will be represented (for 
example) by 

c u a b c d e f  

+ - i .  . - i l .  

+ . . l . i l  

+ . l . l . l  

where *i is used to denote the insertion of arrows, -i for arrows pointing out and +i for 
arrows pointing in. In this matrix we have also indicated the ‘parity’ of the nodes in the 
left-hand column of the matrix. This symbol is used in the diagrams to distinguish 
between an anticlockwise (+) and clockwise (-) ordering of the 3 edges incident at a 
vertex. This ordering of edges is specified by a linear ordering in the matrix and (for 
convenience) has been changed relative to figure 1(b) at one vertex. 
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- - 

The position occupied by a in (2.2) can be used for overall multiplying factors, which 
are a problem in graphical notation. No method of treating these factors has been 
standardized. Brink and Satchler (19682 include them explicitly, while Sandars (1969) 
indicates such factors by carets, so that j is used to show that a factor J2/+1 is implied. 
When the angular momentum values a, b, c, etc are known numerically such factors can 
be included in a. 

It is also possible to include numerical factors in a when a,  b, c etc are not known 
numerically. In this case each distinct angular momentum value ( j )  can be represented 
by a prime number (pi). The inclusion of a factor pi in a can then be used to 
represent the overall factor J2/‘+1. Negative primes can be used to indicate summation 
over all angular momenta obeying the triangle rules. Phases can be accommodated by 
suitable insertion of directed edges, the rearrangement of columns and the use of parity 
signs in the left-hand column. 

i l  1 2  1 3  
(arrows inserted pointing out). + - i  - i  - i  

3. Rules of manipulation expressed in terms of incidence matrices 

Angular momentum diagrams may be modified by a series of rules which leave their 
value unchanged, but allow them to be simplified or be expressed in terms of tabulated 
functions enabling their evaluation. These rules form the core of the work of Yutsis et a1 
(1962), and we now seek to re-express them in terms of incidence matrices. 

We first consider the rules for phase manipulations, which do not alter the form of a 
graph, but which may introduce or remove arrows, change their direction or change 
vertex phases. As mentioned previously, a change of vertex phase, associated with a 
factor (-l)’l+j2+’3, where jl, j 2  and j 3  correspond to edges incident at the vertex, is 
equivalent to a change in the cyclic order of the labels jl, i2, j 3  in the matrix. The 
introduction of an arrow into a graph, pointing out from a vertex, changes the sign of the 
m value associated with the line and introduces a phase factor (-1)’+” (see Sandars 
1969 for examples of these manipulations). Arrows may be introduced into all lines 
pointing into, or pointing out of, a given vertex without changing the value of a graph. 
The corresponding equalities for a 3 - j  symbol? are given below: 

I- I 1 

(change in order of j ’ s )  

I I 

t This symbol is also sometimes referred to as the 3-jm symbol in order to establish a general nomenclature 
(Yutsis et a1 1962). 
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l a b c c  

CL 1 

V 1 

+ 1 1 1  

+ 1 1  1 
I 

Arrows pointing in opposite directions on an edge ( j )  cancel out, and two pointing in 
the same direction reduce to a factor (-1)*’, so that the following single edge subgraphs 
are equivalent: 

The orthogonality theorems for the 3 - j  symbols allow us to modify graphs in two 
ways as indicated by the equalities below (which correspond to figures 2(a) and ( b ) ) :  

[c] U b (-C) b U 

1 

K 1 

1 

+ 1 1  1 

+ 1 1 1  

ORTH 1 

The minus sign in the top row indicates that the angular momentum c is summed over all 
possible values. The factor [ c ]  = 2c + 1, in the conventional notation. Following the 
prime number convention previously described, [ c ]  would be replaced by the square of 
the prime representing c : 

ORTH 2 

b 

Figwe 2. 
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l a a j b b  

'L: 1 - - 

+ 1 1 1  

+ 1 1 1  

The following rules have been denoted n v i ,  Y L V ~  and Y L V ~  by Sandars (1969) (see 
figures 3(a, b and c) respectively). They are the basic rules necessary for separating 
graphs which are connected only on one, two or three edges. Graphs with higher 
connectivity may need to be treated using ORTH I to reduce connectivity to three. It 

[a, b]-1'2 a b  

1 

i 
1 YLVl 

i 

F l :  

(a )  = [a, b11'2 

Fipre 3. 

should be remembered that these rules are only appropriate for separating off closed 
graphs; they cannot be used to divide open graphs into two open parts. In each case we 
include a minimal number of extra vertices to make the rule clear. By convention the 
section of the graph labelled G contains all the open edges. 

YLv2 

Similar matrices to those on the left-hand side, where the equalities in angular 
momentum values implied by the repetition of a and b are not satisfied, are identically 
zero. 
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I I I l a b c l  l a b c  

1 

1 

1 

G I !  1 

U 

1 

1 

C 

1 

1 

a 

1 

1 

b 

1 

n v 3  

4. Procedures for simplifying and evaluating graphs 

The relations given in the previous section provide a basis for manipulating incidence 
matrices according to the rules of angular momentum algebra. However, the motivation 
for reducing algebraic operations to arithmetic operations in this way is to allow the 
calculations to be carried out on a computer. This requires the introduction of a decision 
making program which will determine the sequence of operations needed to attain 
some specified end. 

The first step in any such procedure is to be able to detect specific features of the 
graph which are suitable for modification. For example, all 3-fold cycles can be removed 
to produce a 6- j  symbol, lowering the number of vertices in the graph by two. The most 
convenient way to find features of this type is to construct the adjacency matrix A which, 
according to standard theory (Deo 1974) is given by the off-diagonal part of BB', where 
B is the incidence matrix. 

In a topological examination of this type, the features of B which determine phases 
and angular momentum values can be dropped. The number of n -fold cycles containing 
the vertex 4 appears in the 4th diagonal position in A". However, if there are several 
cycles of this order, further analysis may be necessary to assign sets of vertices to each 
cycle. 

In particular, the sets of three vertices defined by triangular paths can easily be 
identified by comparing the elements of A and A'. Pairs of vertices contained in a 3-fold 
cycle will give non-zero contributions in the same off-diagonal position in both 
matrices. It is thus convenient to construct the Hadamard product A * A2 (= A2 * A), 
where X * Y is defined as the product of corresponding elements in the matrices X and 
Y. Non-zero elements of A * A' serve to identify 3-fold cycles and, moreover, they 
indicate linked vertices in a given cycle. This allows us to assign sets of 3 vertices to each 
3-fold cycle. 

The general problem is to identify n-edge cycles in graphs where the ( n  - 1)-edge 
cycles have already been eliminated. Hence we need to test for the joint existence of 
(n - 1)-edge paths and one-edge paths between all pairs of vertices. The existence of 
n-edge paths between a given pair of vertices can be determined by constructing 
polynomials P, in A which eliminate the n -step paths of A" which are folded back upon 
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themselves. Fold backs provide the only possibility of repeating given edges, for we do 
not investigate the n-edge paths until all cycles of n-edges and less have been 
eliminated. 

The path structure of a graph can be visualized most easily by constructing a 
truncated ‘path tree’. This is determined by choosing an arbitrary origin vertex and then 
letting each possible fold-free path (up to a predetermined number of edges) end at a 
distinct vertex in the tree. The-path tree for a given graph is unique (but infinite), even 
though the finite subgraphs produced by truncation are labelled in different ways. An 
example of such a tree (truncated after 3 edges) is shown in figure 4 for the graph in 
figure 5 .  Note that the path tree will reproduce some vertices and edges of the original 
graph many times. Nevertheless, a fold-free path on the tree always corresponds to a 
fold-free path on the original tree, so long as the path-graph is truncated at (n - 1) for a 
graph with n -edge cycles. 

*9  

Figure 4. 

1 2 

7 6 

Figure 5. 

The polynomials P, for small values of n are easily determined by inspection of the 
path tree : 

P1=A 

P2 =A2 - 31, 

where 31 corresponds to the paths of A’ where a single edge is repeated. 

P3=A3 -5A 

as there are just 5 ways of moving one step in a path containing 3 edges. 

from the following recurrence relationt: 
Higher degree polynomials are difficult to derive in this way, but may be obtained 

Pn+l =APn -2P,-1. (4.1) 

t See B i g s  (1971, p 79), where the corresponding relation for a general k-valent graph is given. B i g s  refers 
to fold-free paths as proper paths. 
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Proof. Consider a typical vertex n edges away from the origin vertex (see figures 4 and 
6). The n-edge fold-free path from the origin vertex to this vertex is represented by an 

I I 1 

I I I 
I 1 I 

n + l  n n-1 

Figure 6. 

entry in P,. The expression AP, = P,A has entries for all the paths obtained by adding 
one more edge to those in P,. Hence it contains all the paths in Pncl as well as paths in 
P,-l due to folded back (n + 1)-edge paths. Each (n - 1)-edge fold-free path can be 
obtained from just two initial nth vertices by folding back a single edge. Hence 

which is a rearrangement of the formula given above. 
Successive application of this formula gives 

P4 = A4 -7A2 + 61 
Ps = A5 - 9A3 + 16A 

P g  = A6- 1 1A4 + 30A2 - 121 

and higher degree expressions which can readily be generated from equation (4.1) as 
required by the computer. 

In many evaluations, we begin with an open graph, so that the reduction may be 
separated into two parts: 

(a )  All open edges are removed to form the simplest possible open graph which 
corresponds to the effective operator for the process being calculated. 

(b )  The remaining complex closed graph is then systematically reduced to sums of 
products of 6-j symbols (corresponding to K4 graphs) for evaluation using either 
tabulated values or a subroutine. 

For the first step it is only necessary to identify the open edges of the graph using the 
incidence matrix, and then to use ORTH 1 and Y L V ~  repeatedly until complete separation 
occurs. There may be some preference for a given form for the final open graph, so that 
it corresponds to a standard form of the effective operator. 

Reduction ( b )  requires a systematic method of separating off 6-j symbols, without 
the introduction of more summations than necessary. An algorithm for this process is 
outlined below. Its main characteristic is the use of the polynomials P, in the adjacency 
matrix to recognize features of the graph, allowing the appropriate arithmetical 
operations to be carried out on the incidence matrix. 
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Construct A * (A2-31) and search for 2’s. 
Eliminate all subgraphs of type shown using 

YLV3 

No 2’s in A * (A2 - 31) 

--t _ _ _ _ _ - _ - - - - - - - - - - -  

I I  t 
- 
+ Search A * (A2 - 31) for 1’s and replace all A 

graphs by a single node using Y L V ~  

No 1’s in A * (Az - 31) 
- - - -  - - - - - - _ _ - - _ -  

Ah 

Input 

Recalculate A 

A 1  

Incidence matrix B 
I 

T I  

I t 

* 
Search (A2 - 31) for 2’s and (A3 - 5A) * A for 1’s 
and 2’s. Use ORTHl on as many disconnected 

squares as possible 

No 2’s in (A* - 31) 
- - - - - -  - - - - - - -_---_--  

11 t 

I[ Adjacency matrix A 

I r I 
I 

Search A for 2’s and remove node pairs using 
ORTHZ - - - - -  _ - - - - - _ - - - -  ti No 2’s in A 

I L J 

2029 

I I I 
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5. Example: structure of the 15-j symbol of the fourth kind 

The graph of this symbol has been given by Yutsis et a1 (1962, figure 20.5a), and is 
shown without arrows and vertex phases in figure 5. We follow their notation in 
labelling the edges to obtain the incidence matrix shown below: 

B= 

1 jl k, k; i'l I' j ;  k; k2 j 2  s p s2 sl p'  
+ i  i 1 

+ l i  1 

- 1 1  1 

- i i  1 

+ 1 1  1 

- i 1  1 

- i i  1 

- 1 1  i 

+ i i  1 

+ 1 1  1 

1 

5 

6 

7 

8 

9 

10 

We have numbered the vertices on the right-hand side in the same way as figure 5 for 
ease of reference. 

The adjacency matrix is given by the moduli of off-diagonal elements of BBtas 
follows (where the same vertex ordering is employed): 

mod(BBt - 31) = A = . 1 . . . .  1 . . 1  

1 . 1  . .  l . . . .  

* 1 . 1 . . . 1 . .  

. .  1 . 1  . . .  1 .  

. . *  1 . 1  . . .  1 

. 1 . . 1 . 1 . . .  

1 . . . .  1 . 1 . .  

. .  1 . . . 1 . 1 .  

. . .  1 . . . 1 . 1  

1 . . . 1 . . . 1 .  

In order to get information on the structure of the graph we need to construct the 
polynomials P,. In particular 
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P3*A= 

203 1 

. 1 . . . . 1 . . . 1 

1 . . . .  1 . . . .  2 

P2 = 

and 

. . l  . 1 2 . 1 1 .  

. . . l l  . 2 1  . 1  
1 . . . 1 1 1 . 2 .  

. 1 . .  . 1  . 2 . 2  

1 1 1  . .  . 1 . 2 .  

2 . 1 1 . .  . 1  . 1  

. 2 1  . I .  . . 1 1  

1 1 . 2 . 1 . .  . 1  

1 . 2  - 2 . 1 . .  . 
. 1 . 2 . 1 1 1 . .  

1 

2 

3 

4 

5 
6 

7 

8 

9 

10 

1 l 3  
* I  1 ,  . 1  . 1 . .  . 2  

. . .  l . . . . .  1 

. 1  a . . .  l . . .  

1 . . . .  1 e . . .  

i : : : 2 1 : : ; ; ; 1 :  

. . . .  . . .  . 10. 

The absence of 3-edge cycles is shown by the fact that A * P2 = 0. P2 identifies 
opposite corners in 4-edge cycles by its ‘2’ entries. In cases where there are two ‘2’ 
entries in a row, the vertex corresponding to that row must lie at the junction of two 
4-edge cycles. Nevertheless, it is not straightforward to identify the sets of vertices in 
each cycle from a consideration of P2. This information is given directly by the 
expression P3 * A, which tells us which pairs of vertices are joined by both a 3-edge path 
and a l-edge path. The ‘2’ entries in P3 * A identify pairs of vertices which are linked by 
two alternative 3-edge paths and a single l-edge path. It is thus straightforward to 
identify the subgraphs shown in figure 7. 

By applying ORTH 1 and n v 3  to these diagrams it is possible to get several 
expressions for the 15-j symbol in terms of n - j  symbols with n S 12. For example, the 
process shown in figure 8 gives the result quoted by Yutsis et a1 (1962, equation (20.6)), 
where the open subgraph in the final expression is part of a 9-j symbol (with 6 vertices). 
The computational technique described in the previous section could easily be adapted 
to search automatically for algebraic relations of this type. 
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(a)  

Figure 7. 

\ E  9 I O /  \ R  

8 9 

9 10 

4 5 

10 

3 4 5 

Figure 8. 

6. Conclusion 

We have demonstrated the existence of a simple one-to-one correspondence between 
the manipulations of angular momentum graphs and manipulations with their incidence 
matrices. In addition, polynomials of the adjacency matrix have been defined which 
provide a technique for controlling a computer program aimed at carrying out specific 
processes, such as the evaluation of complex expressions. 

Rosensteel et a1 (1975) have discussed the characterization, generation and count- 
ing of nth single-particle Green function graphs using the properties of permutation 
groups. We shall demonstrate, in a later publication, that their procedures can be 
generalized to graphs representing n -particle operators. If we then make use of the fact 
that the angular momentum graphs are isomorphic to the corresponding Feynman 
diagrams (Judd 1967), the methods outlined in this paper provide a means of calculating 
perturbation contributions on a computer, without the need to perform a separate 
algebraic analysis of angle-dependent factors. 
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